viernes, 15 de febrero de 2008

Física

Introducción

lunes, 11 de febrero de 2008

domingo, 27 de enero de 2008

El Nacimiento de la Electrónica y del Universo de la Informatización

Si el mundo de la electrónica comprende la ciencia y la tecnología relacionadas con el movimiento de las partículas cargadas en un gas, en el vacío, o en un semiconductor, entonces la invención de la válvula de oscilación o tubo de vacío le dio a la tecnología inalámbrica su primer impulso y marcó el inicio de la nueva ciencia de la electrónica. Correspondió este honor al físico británico John Ambrose Fleming (1849-1945).

En 1899 Fleming se hizo consultante de la Compañía de Marconi. Por entonces la telegrafía inalámbrica se encontraba en su infancia y Marconi estaba experimentando constantes innovaciones para aumentar la distancia que podía alcanzarse. Fleming quedó absorbido con esta cuestión y comprendió que el principal problema provenía de la escasa sensibilidad del dispositivo detector de las señales. En noviembre de 1904 Fleming patentó su válvula de oscilación llamada así por la analogía observada con la válvula de un fluido que permite solo el movimiento del flujo en una sola dirección. El diodo de tubo de vacío, como mas comúnmente se conoció, estaba constituido por un filamento caliente que emite electrones de acuerdo con el efecto Edison y una placa, el ánodo, que es el colector de electrones. En este dispositivo la corriente circula sólo cuando esta placa es positiva respecto al cátodo. Si se aplica un potencial alterno a la placa, la corriente pasará por el tubo solamente durante la mitad positiva del ciclo, actuando así como rectificador. La válvula de Fleming fue el primer diodo que se utilizó en la radio como detector y rectificador.

El físico británico John Ambrose Fleming (1849-1945) sintió un interés inicial por la Química y dio sus primeros pasos en el laboratorio de Frankland, pero luego quedó fascinado al conocer de los trabajos de Maxwell y pasó a investigar en el campo de la electricidad y el magnetismo en Cambridge donde alcanzó el doctorado en ciencias. Unos años después trabajó en los laboratorios de Edison en los Estados Unidos y allí pudo conocer de primera mano el descubrimiento conocido como Efecto Edison que indicaba la emisión de electrones por un filamento caliente en un bulbo de iluminación.

A su regreso a Londres, en 1885 el Colegio Universitario de Londres (UCL) le solicitó fundara un nuevo departamento de Ingeniería Eléctrica, en el cual el se desempeñaría como profesor durante 41 años. Compartió la docencia universitaria con la investigación y en 1904, luego de identificar como uno de los problemas a resolver en la naciente industria de la telegrafía inalámbrica la pobre sensibilidad de los detectores, inventó el primer diodo que se utilizó en la radio como detector y rectificador.

Pero el más importante hito de los primeros tiempos de la electrónica llegó en 1906 cuando el físico e inventor estadounidense Lee De Forest (1873 – 1961) colocó un tercer electrodo, como una rejilla, en la válvula de Fleming, y así inventó el tubo triodo al que llamó audión. Un pequeño cambio en el voltaje de la rejilla provocaba un notable cambio en el voltaje de la placa. De modo que fue el audión el primer amplificador. Todavía debieron pasar cinco años para mejorar el vacío en el audión y añadir un revestimiento eficiente de oxido en el cátodo para obtener un dispositivo confiable. Este fortaleció la corriente a través del tubo, amplificando las débiles señales del telégrafo y también de la radio.

En los círculos británicos se ha creado cierto estado de opinión sobre la novedad de la patente de De Forest en relación con la válvula de Fleming. El inventor de la tecnología termoiónica disputó en las cortes la originalidad de la propuesta de De Forest y su opinión fue desestimada por los jueces.

En 1912 De Forest desarrolló un circuito de retroalimentación que podría incrementar la salida de un transmisor de radio y producir corriente alterna. Es difícil admitir la afirmación de que no apreció correctamente la importancia de su invención y por ello no solicitara la patente hasta 1915 cuando ya lo había hecho el profesor de la Escuela de Ingeniería Eléctrica de la Universidad de Columbia, Edwin Howard Armstrong (1890- 1954). El circuito regenerador de Armstrong constituyó un progreso en la radiofonía porque podía amplificar débiles señales de radio sin distorsión. De Forest apeló ante los jueces y casi 20 años después la Corte falló a su favor pero en la comunidad de electrónicos el crédito le fue dado a Armstrong.

Ambos debieron hacer invenciones trascendentes en la tecnología de los medios de comunicación. De Forest en la década de los 20 encontró una forma de registrar el sonido sobre la cinta de la película. Esto llevó directamente a la creación de las imágenes animadas con movimiento y con sonido. Solicitó la patente en 1921 y le fue otorgada en 1924. Desde entonces intentó atraer la industria del cine hacia su tecnología y sin embargo los cineastas no mostraron interés. Irónicamente las primeras tentativas del cine hablado no usaron la patente de De Forest pero años después aplicaron su método.

Fuente : Geocities

Los Avances En los Programas de exploración del Cosmos

Quizás ninguna otra empresa científica tenga una naturaleza interdisciplinaria tan marcada como la conquista del cosmos. Pero nadie duda que los vuelos espaciales exigieran el desarrollo de una ciencia y una ingeniería propia y que en estos progresos desempeñara un importante papel la Física, al tiempo que sus ideas se nutrieran de los resultados de esta soñada exploración.

El análisis del panorama político en que se desarrolla la conquista del cosmos desborda los propósitos de nuestro breve examen pero es imposible omitir que, a mediados del siglo, la lógica que presidía las relaciones entre las naciones más poderosas del planeta, determinó que en lugar de una eficaz colaboración entre las partes, la cosmonáutica naciera con un claro perfil de competencia que dividió los esfuerzos, tapió el intercambio de experiencias, multiplicó los gastos, y paralelamente alentó el desarrollo en espiral de programas y armas que "neutralizaran" al enemigo.

La guerra fría entre los bloques calentó las relaciones entre las naciones y los proyectos para la fabricación de cohetes portadores ambivalentes (empleados para las lanzaderas de las naves espaciales y de proyectiles intercontinentales) y el curso de programas tan irracionales como "la guerra de las galaxias", demandaron de enormes recursos que compitieron con la necesaria asistencia a los países subdesarrollados. Esta ayuda para el desarrollo hubiera seguramente saneado la atmósfera internacional y evitado tal vez el surgimiento de los focos de tensión que matizados por la frustración y el odio de pueblos y culturas hacia la irracionalidad de la civilización occidental derivaron hacia la dolorosa confrontación y las guerras "locales" del fin siglo.

Cuba pequeño país del Caribe, sumergida en esta confrontación, sufrió la hostilidad del gobierno de los Estados Unidos desde el propio nacimiento de la Revolución cubana y en el otro extremo de la cuerda apreció la solidaridad y ayuda recibida de la nación soviética. Esto explica que varias generaciones de cubanos aplaudieran los logros en materia de vuelos espaciales de la ciencia soviética en tanto las realizaciones de la astronáutica estadounidense encontraran en nuestro contexto una baja resonancia.

A continuación, pasaremos breve revista a los momentos principales de esta carrera, sus cabezas más visibles, los logros y fracasos, y las repercusiones más importantes hacia el desarrollo de la ciencia. No esconderemos el sesgo de nuestra pupila, pero intentaremos equilibrar las fuentes de información y mantener una objetividad que rara vez es encontrada en el tratamiento de estos temas.

Apenas 5 días antes de la invasión de un ejército mercenario por Playa Girón (Bahía de Cochinos), un 12 de abril de 1961 la noticia recorría el mundo: una nave espacial soviética con un cosmonauta a bordo había orbitado el planeta. En una hora y 48 minutos le había dado una vuelta a la Tierra pasando por encima de América, luego de África para caer finalmente en la Siberia. El joven piloto de franca sonrisa se llamaba Yuri y en una breve declaración desde la Vostok -1 había reclamado: "Pobladores del mundo, salvaguardemos esta belleza, no la destruyamos". En julio de ese mismo año

Gagarin visitó a Cuba, y en la multitudinaria concentración popular del 26, Fidel le impuso la Orden Playa Girón que lo convirtió en la primera persona en recibir esta distinción de la nación cubana.

Fuente : Geocities

Algunas Tecnologías Instrumentales derivadas de la teorías fisicas y su aplicación para solucionar Problemas trascendentes

Resumir en breves líneas los extraordinarios progresos alcanzados en el siglo XX en materia de tecnología derivadas de teorías físicas es tarea imposible. Reducimos nuestro propósito a esbozar algunas técnicas de avanzada que emergen de los resultados teóricos más brillantes nacidos y desarrollados en este siglo.

Cuando Roentgen descubre en 1895 los rayos de naturaleza entonces desconocida pero desde ya comprobada su alta capacidad de penetración pronto se aplica para obtener las primeras fotos de los huesos humanos. Su aplicación en Medicina encuentra una rápida difusión y en determinadas circunstancias históricas brilla en esta actividad la célebre Marie Curie. También con relativa rapidez se inaugura una época en que los rayos –X resultan útiles para analizar las sustancias cristalinas o los espectros de emisión de estas radiaciones por los elementos químicos permiten su identificación. Las páginas que siguen abordaran brevemente estos momentos.

Con el propósito de apoyar la candidatura para una plaza vacante en la Academia de Ciencias del eminente físico Edouard Branly (1844-1940), que representaba los valores del conservadurismo francés, la prensa reaccionaria francesa no dudó en dañar la imagen de la insigne científica de origen polaco, Marie Curie. El daño se hizo y la candidatura de Marie fue derrotada en 1910 por dos votos. Un año después a su regreso del Congreso Solvay en Bruselas, debió enfrentar una nueva ronda de odio esta vez "acusada" de sostener relaciones con el destacado físico francés Paul Langevin (1872 – 1946). Poco después recibiría la información de la Academia Nobel de haber recibido un segundo Premio, esta vez en la disciplina de Química. De cualquier forma en los primeros meses de 1912, sufrió primero una fuerte depresión nerviosa y luego debió someterse una operación de los riñones. Sólo a fines de este año Marie retornó al laboratorio después de casi 14 meses de ausencia. El escándalo había finalizado y la Academia de Ciencias estaba dispuesta a darle la bienvenida a la mujer que había sido dos veces laureada con un premio Nobel.

Pero pronto se pondría a prueba la estatura moral y el patriotismo verdadero que, durante el periodo de la guerra, iba a demostrar Marie por su nación de adopción. Por el otoño de 1914, cuando Alemania declaró la guerra a Francia, la construcción del Instituto de Radio había terminado pero la Curie no había trasladado aún su laboratorio para la nueva edificación. El trabajo del Instituto de Radio podría haber esperado por la restauración de la paz pero la Curie encontró formas de poner su conocimiento científico al servicio del país. En el Instituto de Radio, la Curie entrenó alrededor de 150 mujeres en la técnica de rayos – X que actuaron como asistentes en las unidades radiológicas móviles que fueron llevadas a las líneas del frente. Previamente había encabezado una campaña nacional para adaptar carros de aquellos tiempos como unidades radiológicas móviles que dieran una asistencia inmediata para el tratamiento de los heridos y fracturados en el campo de batalla. El uso de los rayos –X durante la guerra salvó las vidas de muchos heridos y redujo los sufrimientos de los que sufrieron fracturas de todo tipo.

Bajo la dirección de Curie el Instituto de Radio en París se convirtió en un centro mundial para el estudio de la radioactividad. Entre 1919 y el 1934, año en que fallece la Curie, los científicos del laboratorio publicaron más de 483 artículos y 31 libros y monografías. Hasta el final de su vida ella continúo sus estudios para aislar, purificar y concentrar el polonio y el actinio. Al mismo tiempo su trabajo estuvo íntimamente relacionado con la producción comercial de las sustancias radioactivas y muchas de sus aplicaciones en la ciencia, la industria y la medicina.

Cuando los servicios radiológicos ya estaban marchando establemente, Curie cambió su atención hacia el servicio de radioterapia. Comenzó entonces a usar una técnica desarrollada en Dublín para colectar radón, un gas radioactivo emitido continuamente por el radio. Trabajando sola y sin una protección adecuada Madame Curie pudo colectar el gas en ampolletas de vidrio selladas que eran así entregadas a los hospitales militares y civiles para que los médicos empleando agujas de platino lo inyectaran en la zona del cuerpo de los pacientes donde la radiación debía destruir el tejido enfermo. Se inauguraba la época de la radioterapia en la medicina.

El redescubrimiento de los rayos –X se produjo cuando el físico alemán Max von Laue (1879 – 1960) determina experimentalmente la longitud de onda de los rayos –X al estudiar los espectros de difracción que experimentan las sustancias cristalinas. Otros pioneros en el estudio de la estructura de los cristales mediante sus espectros de difracción de rayos –X fueron los físicos británicos, padre e hijo, William Henry Bragg (1862-1942) y William Lawrence Bragg (1890-1971). El primero fue profesor de Física de universidades inglesas y en el último tramo de su vida profesional ocupo la cátedra de Física de la Universidad de Londres. Su hijo le siguió los pasos en la investigación y juntos desarrollaron trascendentales estudios sobre la estructura cristalina de importantes sustancias del mundo inorgánico demostrando la utilidad de la técnica como herramienta de investigación para confirmar las teorías cristalográficas. En reconocimiento a los logros cosechados compartieron padre e hijo el premio Nobel de Física de 1915. Nunca antes ni después se ha repetido este acontecimiento. William Lawrence fue sucesor en la Universidad de Manchester del físico nuclear Ernest Rutherford y luego funda en Cambridge, en 1938 el laboratorio de Biología Molecular que se destacará en los próximos años por los estudios fundamentales que desarrolla que cubren todo una época.

Fuente : Geocities

El empleo de la energía nuclear y la posición de la mayoría de la comunidad científica

Nueve años después de inventada la pila atómica, y a seis años del holocausto de Hiroshima y Nagasaki, científicos estadounidenses emplearon por primera vez la tecnología nuclear para generar electricidad. En 1951, bajo la supervisión de la Comisión de Energía Atómica se iniciaron las pruebas del funcionamiento de un reactor nuclear experimental instalado en una central eléctrica construida por los Laboratorios Nacionales Argonne en Idaho. El reactor experimental produjo energía suficiente para poner en funcionamiento su propio sistema de puesta en marcha; como llegaría a ser común en todas las plantas de energía atómica, el calor del núcleo haría hervir agua y el vapor impulsaría una turbina.

En 1954, los soviéticos abrieron la primera planta nuclear civil en Obninsk. La planta fue capaz de generar sólo 5 MW de energía eléctrica. La planta civil de Calder Hall representó la inauguración del programa nuclear británico en 1956. Pero la primera planta electronuclear comercial fue levantada en 1957 por la compañía Westinghouse en Shippingport, Pensilvania. Pronto empezaron a funcionar centrales nucleares en todo el mundo. Al finalizar la centuria las más de 400 centrales nucleares instaladas en 18 países generaban casi la quinta parte de la producción mundial, que se había decuplicado en la segunda mitad del siglo superando la astronómica cifra de 10 billones de kWh. Francia, líder mundial, producía el 75% de su generación eléctrica en plantas nucleares.

Enrico Fermi había mostrado virtudes relevantes como físico teórico y como investigador experimental liderando el grupo de la Universidad de Roma hasta que emigró de la Italia fascista hacia EEUU para evitar el sufrimiento de su esposa de origen judío. En la Universidad de Chicago, como parte del proyecto Mahanttan, inventó la manera de controlar la reacción de fisión nuclear. La pila atómica de Fermi es precursora de los reactores termonucleares para generar energía eléctrica. Una nueva fuente energética plantearía nuevos desafíos.

Fermi se opuso al desarrollo de los armamentos nucleares en la posguerra y su trágica desaparición, víctima de un cáncer cuando apenas cumplía los 53 años fue una sensible pérdida para la ciencia.

Fuente : Geocities

La desintegración radioactiva y la teoría del átomo nuclear

A continuación intentaremos llevar a cabo un breve recorrido por aquellos descubrimientos trascendentes de la estructura nuclear del átomo. Al hacerlo revelaremos el protagonismo de hombres de ciencias e instituciones élites en momentos cruciales vividos por la humanidad, asistiendo a conflictos de género, peligros de subsistencia, compromisos políticos, y en fin al drama de las ideas que los acompañó.

Casi desde estos primeros momentos comenzaron las tentativas por describir un modelo atómico. J.J. Thomson concibe inicialmente la carga positiva distribuida uniformemente por todo el átomo mientras los electrones en número que compensaba esta carga se encuentran en el interior de esta nube positiva. Un año más tarde, supone a los electrones en movimiento de tipo oscilatorio alrededor de ciertas posiciones de equilibrio dentro de la carga positiva distribuida en una esfera.

Luego de otros intentos para describir un modelo atómico que explicara el espectro de rayas y de bandas y el fenómeno de la radioactividad, aparece en 1911 la publicación del físico neozelandés Ernest Rutherford (1872 – 1937) "La dispersión por parte de la materia, de las partículas alfa y beta, y la estructura del átomo" en la que propone el modelo nuclear del átomo. Según Rutherford la carga positiva y prácticamente la masa del átomo se confinan en una porción muy reducida, 104 veces menor que las dimensiones del átomo, mientras los electrones quedan alojados en una envoltura extranuclear difusa. La carga positiva nuclear es igual a Ze, siendo e, la carga del electrón y Z aproximadamente la mitad del peso atómico.

Rutherford fue más allá y en diciembre de 1913 expone la hipótesis de que la carga nuclear es una constante fundamental que determina las propiedades químicas del átomo. Esta conjetura fue plenamente confirmada por su discípulo H. Moseley (1887 – 1915), quien demuestra experimentalmente la existencia en el átomo de una magnitud fundamental que se incrementa en una unidad al pasar al elemento siguiente en la Tabla Periódica. Esto puede explicarse si se admite que el número de orden del elemento en el sistema periódico, el número atómico, es igual a la carga nuclear.

Fuente: Geocities.